Se prohíbe expresamente la reproducción parcial o total del contenido de este documento en cualquier forma con fines distintos al uso individual.
Sujeto a modificaciones y errores.
Todo el texto, las imágenes y etiquetas son propiedad de nimax GmbH y de Meade Instruments.

1155 - ES - Meade InfinityAZ 60mm/70mm

MANUAL DE INSTRUCCIONES MEADE

Telescopio refractor altazimut de 60mm | 2,4" Telescopio refractor altazimut de 70mm | 2,8"

GAMA INFINITY Telescopios de 60 y 70mm

¡ADVERTENCIA!

No use nunca un telescopio Meade® para mirar al Sol. Mirar al Sol o cerca de él provocará daños inmediatos e irreversibles a sus ojos. Los daños oculares a menudo no producen dolor, por lo que el observador no recibe ninguna advertencia de que existen hasta que es demasiado tarde. No apunte este telescopio a ni cerca del Sol. No mire por el telescopio ni el localizador mientras se mueve. Los niños deben recibir supervisión constante de un adulto durante la observación.

INTRODUCCIÓN

Su telescopio es un instrumento excelente para principiantes, y ha sido diseñado para observar objetos tanto celestes como terrestres. Puede ser su ventana personal al universo o dejarle estudiar de cerca el comportamiento de pájaros anidando en una colina lejana.

El telescopio se entrega con las piezas siguientes:

- Tubo óptico
- Trípode de aluminio con bandeja de accesorios
- Dos oculares de 1,25": MA25mm, MA9mm
- Espejo de diagonal para imagen enderezada de 90 grados
- · Barlow 2X
- · Localizador de punto rojo con soporte
- Soporte de yugo

El tubo óptico del Infinity 60 tiene una longitud focal de 800mm, y su lente de objetivo tiene un diámetro de 60mm.

El tubo óptico del Infinity 70 tiene una longitud focal de 700mm y un diámetro de 70mm.

El diámetro de la lente es uno de los elementos informativos más importantes del telescopio. El tamaño de la lente del objetivo determina la cantidad de detalle que podrá observar en el telescopio. La información de longitud focal le ayudará a calcular el aumento.

Instalar el telescopio implica los sencillos pasos siguientes:

- · Instalación del trípode
- Fijación de bandeja de accesorios
- Fijación del tubo óptico al soporte
- Fijación del localizador
- Fijación del espejo de diagonal y el ocular
- Alineación del localizador

Observe la imagen de la página siguiente y familiarícese con las piezas de su telescopio. Prosiga a continuación a "Instalación del trípode".

INSTALACIÓN DEL TRÍPODE

El trípode es el soporte fundamental de su telescopio y se entrega premontado de fábrica, con excepción de la bandeja de accesorios. La altura del trípode puede ajustarse para observar cómodamente. Nota: El número entre paréntesis, como (3) se refiere a los números indicadores de la Fig. 1.

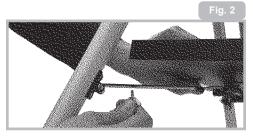
- Para instalar el trípode, separe homogéneamente las patas y colóquelo sobre una superficie sólida.
- 2. Establezca la altura de su trípode:
 - a. Gire y afloje el tornillo de bloqueo de pata (20) para desbloquear el bloqueo de la pata.
 - b. Deslice la sección interna de la pata (19) hacia adentro o afuera hasta la longitud deseada. Repita el proceso con las otras patas.
 - c. Gire y apriete el tornillo de bloqueo de la pata para volver a bloquearla.
 - d. Repita el proceso con las otras patas.

FIJACIÓN DE BANDEJA DE ACCESORIOS

La bandeja ayuda a estabilizar el trípode y es un práctico soporte de oculares y otros accesorios Meade, como la lente Barlow.

- Coloque la bandeja de accesorios triangular (26) sobre los soportes de las patas (9). Alinee los tres agujeros de cada esquina de la bandeja de accesorios con los agujeros de cada soporte de pata.
- Pase las roscas manuales incluidas desde la parte inferior de cada soporte de pata dentro de la parte inferior de la bandeja de accesorios (ver Fig. 2).
 Apriete hasta que se note resistente.
- 3. Repita el proceso con los otros dos soportes de patas.

FIJAR EL TUBO ÓPTICO AL SOPORTE


El tubo óptico captura la luz distante y la focaliza en el ocular.

- Saque los dos mandos de bloqueo (5) del soporte del tubo óptico.
- Deslice el mango de altitud (17) en el agujero del mando de bloqueo de altitud (11).
- Ponga el tubo óptico (4) entre las horquillas del soporte, orientado como se muestra en la Fig. 3.
- Pase un mando de bloqueo (5) por cada uno de los agujeros de las horquillas del soporte y apriete hasta que se note firme.

FIJACIÓN DEL LOCALIZADOR

Un ocular (1) tiene un campo de visión limitado. Un localizador (2) tiene un campo de visión más amplio, lo que facilita la localización de objetos. El localizador tiene un punto rojo para facilitar una alineación más precisa con un objetivo.

- Observe los dos tornillos (25) introducidos en dos pernos (ver Fig. 4) en el tubo óptico. Saque los tornillos del tubo.
- Alinee los dos agujeros del soporte del localizador con los pernos. Deslice el soporte sobre los pernos. Consulte la Fig. 1, detalle C.
- Vuelva a colocar los tornillos sobre los pernos y apriételos hasta que se noten firmes.

FIJACIÓN DEL ESPEJO DE DIAGONAL Y EL OCULAR

El espejo de diagonal refleja la luz del tubo óptico a una posición de observación más cómoda.

- 1. Deslice el espejo de diagonal (13) en el tubo del enfoque (15).
- 2. Apriete el tornillo del tubo para fijar firmemente el espejo de diagonal.
- 3. Deslice el ocular MA 26mm (1) en el espejo de diagonal.
- 4. Apriete el tornillo del espejo de diagonal

para fijar firmemente el ocular.

ALINEACIÓN DEL LOCALIZADOR

Realice la primera parte de este procedimiento de día, y el último paso de noche.

- Apunte el telescopio a un objeto terrestre fácil de localizar, como la parte superior de un poste de teléfono o una montaña o torre lejana. Mire por el ocular en el espejo de diagonal y gire el mando de enfoque (23) hasta que la imagen quede enfocada con definición. Centre con precisión el objeto en el campo de visión del ocular.
- Encienda el localizador de punto rojo girando el mando grande bajo la lente del localizador a la derecha (10). Gire el mando para ajustar la intensidad del punto rojo como desee.
- Mire por el localizador. Gire uno o ambos tornillos de alineación del localizador (3) hasta que el punto rojo esté exactamente sobre el objeto centrado en el ocular.
- Compruebe la alineación de noche con un objeto celeste, como la Luna o una estrella brillante, y use los tornillos de alineación del localizador para realizar

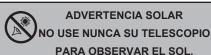
- cualquier eventual ajuste.
- Cuando termine, apague el localizador girando el mando grande bajo la lente del localizador a la izquierda hasta que emita un chasquido.

MOVER EL TELESCOPIO

Su telescopio tiene un soporte altazimut. Altazimut es una forma complicada de indicar que su telescopio se mueve arriba y abajo y de lado a lado. Otros telescopios pueden estar montados de forma distinta.

 Afloje ligeramente los mandos de control de altitud en forma de estrella (5) y el mando de bloqueo del mango de altitud (11). Aflojar los mandos le permitirá

(c) nimax GmbH


mover el telescopio arriba y abajo.

- 2. Afloje ligeramente el mando de bloqueo horizontal (6). Aflojar este bloqueo permite mover el telescopio de lado a lado.
- 3. Cuando localice un objeto, vuelva a fijar los mandos de control. Puede usar el control de movimiento lento (16) para realizar movimientos suaves y precisos para seguir (o "rastrear") un objeto verticalmente a medida que se mueve por el ocular.
- Para usar la función de control de movimiento lento (16), apunte el telescopio a un objeto y fije el mando de control (5). Bloquee el mando de bloqueo de altitud (11) y gire el mando de movimiento lento (16) para seguir el objeto en dirección vertical.

LA NORMA MÁS IMPORTANTE

Tenemos una norma muy importante que siempre debe seguir al usar su telescopio:

Pase un buen rato cuando esté observando. Puede que no sepa todo lo que se debe saber sobre un telescopio o todas las vistas

MIRAR AL SOL O CERCA DE ÉL PROVOCARÁ DAÑOS INMEDIATOS E IRREVERSIBLES A SUS OJOS LOS DAÑOS OCULARES A MENUDO NO PRODUCEN DOLOR. POR LO QUE EL OBSERVADOR NO RECIBE NINGUNA **ADVERTENCIADE QUE EXISTENHASTA QUE ES** DEMASIADO TARDE

NO APUNTE ESTE TELESCOPIO NI SU LOCALIZADOR A NI CERCA DEL SOL. NO MIRE POR FLITFLESCOPIO NI FLI OCALIZADOR MIENTRAS SE MUEVE. LOS NIÑOS DEBEN RECIBIR SUPERVISIÓN CONSTANTE DE UN ADULTO DURANTE LA OBSERVACIÓN

del universo, pero no pasa nada. Comience apuntando y observando.

Disfrutará más de su telescopio a medida que lo conozca mejor. No se asuste por los términos difíciles ni los procesos complicados. No se ponga nervioso. Relájese y disfrute de su telescopio.

Aprenderá más v progresará en la astronomía cuanto más observe. Busque en internet o vava a su biblioteca y lea algunos libros sobre las estrellas y los planetas. Lea sobre los astrónomos de otros tiempos. Muchos de ellos no tenían telescopios mayores que el que está usando ahora mismo. Galileo, uno de los primeros astrónomos en usar un telescopio. descubrió cuatro de las lunas de Júpiter con un telescopio aproximadamente del mismo tamaño que el suyo (¡y ni tan solo enfocaba demasiado bien!).

OBSERVACIÓN

Observación diurna: Pruebe primero su telescopio de día. Es más sencillo aprender su funcionamiento y el modo de observación cuando hay luz.

Elija un objeto fácil de observar: Una montaña lejana, un árbol grande, un faro o

LA COMUNIDAD MEADE 4M

No solamente ha adquirido un telescopio, se ha embarcado en una aventura astronómica sin fin Comparta su viaje con otros aceptando su pertenencia gratuita a la comunidad de astrónomos 4M.

Acceda a www.Meade4M.com para activar su pertenencia hov.

un rascacielos son objetos perfectos.
Apunte el tubo óptico de forma que se alinee con su objeto.

Desbloquee los mandos de bloqueo: Para mover el telescopio, deberá desbloquear los mandos de bloqueo horizontal (6) y vertical (5 y 11) (gírelos para desbloquearlos o bloquearlos; al bloquearlos, apriételos solamente hasta que se noten firmes, no los apriete en exceso).

Uso del localizador: Si no lo ha hecho, alinee el localizador (2) con el ocular del telescopio (1) como se ha descrito anteriormente. Mire por el localizador hasta que pueda ver el objeto. Será más fácil localizar un objeto con el localizador que con el ocular. Alinee el objeto con el punto de mire del localizador. Mire por el ocular: Cuando tenga el objeto

Mire por el ocular: Cuando tenga el objeto alineado en el localizador, mire por el ocular del tubo óptico. Si ha alineado el localizador, verá el objeto en el ocular.

Enfoque: Mire por el ocular y practique el enfoque en el objeto elegido.

Pruebe con los controles de ajuste aproximado y preciso: Practique usando el control de ajuste preciso (16) para mover el telescopio. Puede ser muy práctico, especial-

mente cuando quiera mover el telescopio en pasos muy pequeños (control preciso).

Observación lunar: Cuando se sienta cómodo con el localizador, los oculares, bloqueos y controles de ajuste, podrá probar el telescopio de noche. La Luna es el mejor objeto observable la primera vez que salga de noche. Elija una noche con la Luna en cuarto creciente. Con Luna llena no se ven sombras, y hace que parezca plana y sin interés.

Busque diversas características en la Luna. Las características más evidentes son los cráteres. De hecho, puede ver cráteres dentro de otros cráteres. Algunos cráteres tienen líneas brillantes alrededor. Se llaman rayos y son resultado del material lanzado fuera del cráter cuando recibió el impacto de un objeto. Las zonas oscuras de la Luna se llaman mares y se componen de lava del tiempo en que la Luna aún tenía actividad volcánica. También puede ver cordilleras montañosas y líneas de fallas en la Luna. Use un filtro de densidad neutro (a menudo llamado "filtro lunar") cuando observe la

Use un filtro de densidad neutro (a menudo llamado "filtro lunar") cuando observe la Luna. Los filtros de densidad neutros pueden adquirirse como accesorio opcional de

Meade y mejoran el contraste para mejorar su observación de características lunares. Dedique varias noches a observar la Luna. Algunas noches, la Luna es tan brillante que dificulta la observación de otros objetos. Son noches perfectas para la observación lunar.

Observación del sistema solar: Tras observar la Luna, está preparado para pasar al siguiente nivel de observación, los planetas. Dispone de cuatro planetas que puede observar fácilmente con su telescopio: Venus, Marte, Júpiter y Saturno.

Nueve planetas (¡o quizá más!) recorren un patrón aproximadamente circular alrededor

¿DEMASIADA POTENCIA?

¿Se puede tener demasiada potencia? Si el tipo de potencia a la que se refiere es el aumento del ocular, sí puede. El error más habitual de un observador principiante es "sobrepotenciar" un telescopio usando aumentos elevados que la apertura del telescopio y las condiciones atmosféricas no soportan. Tenga en cuenta que una imagen más pequeña, pero más brillante y con mejor resolución, es notablemente superior a una mayor, pero apagada y con mala resolución. Las potencias superiores a 400x deben usarse exclusivamente en las condiciones atmosféricas más estables...

del Sol. Cualquier sistema de planetas que orbiten una o más estrellas se llama sistema solar. Nuestro Sol, por cierto, solamente es una estrella enana amarilla. Es promedio en lo que respecta a estrellas y es una estrella de mediana edad. Aparte de los planetas existen nubes cometarias, planetoides helados y otros restos del nacimiento de nuestro sol. Recientemente los astrónomos han encontrado grandes objetos en esta zona, y podrían aumentar el número de planetas de nuestro sistema solar.

Los cuatro planetas más cercanos al Sol son rocosos y se llaman planetas interiores. Mercurio, Venus, la Tierra y Marte son los planetas interiores. Venus y Marte pueden verse fácilmente en su telescopio.

Venus se ve antes del amanecer o tras la puesta de sol, porque está cercano al Sol. Puede observar Venus pasando por sus fases crecientes. Sin embargo, no podrá ver detalles de superficie en Venus porque tiene una atmósfera gaseosa muy densa.

Cuando Marte está cercano a la Tierra, puede ver algunos detalles de Marte, y a veces incluso sus cascos polares. A menudo, sin embargo, Marte está más lejos y solamente aparece como un punto rojo con algunas líneas más oscuras cruzándolo.

Júpiter, Saturno, Urano, Neptuno y
Plutón son los planetas exteriores. Estos
planetas, con la excepción de Plutón, están
principalmente compuestos por gases y
se llaman a veces gigantes gaseosos.
Si hubieran crecido mucho más podrían
haberse vuelto estrellas. Plutón está
compuesto principalmente por hielo.

Júpiter es notablemente interesante para observarlo. Puede apreciar bandas en la cara de Júpiter. Cuanto más tiempo pase observando estas bandas, más detalles podrá ver.

Una de las vistas más fascinantes de Júpiter son sus lunas. Las cuatro lunas más grandes son las lunas galileas, llamadas así por el astrónomo Galileo, que las observó por primera vez. Si nunca ha visto las lunas galileas en su telescopio anteriormente, se está perdiendo algo excepcional. Cada noche, las lunas aparecen en distintas posiciones alrededor del cielo joviano. A veces este movimiento se llama danza galilea. En cualquier noche, puede ver la sombra de una luna en la cara de Júpiter, ver como una

luna eclipsa otra o incluso ver emerger una luna de la parte posterior del disco gigante de Júpiter. Dibujar las posiciones de las lunas cada noche es un excelente ejercicio para astrónomos noveles. Cualquier telescopio pequeño puede ver las cuatro lunas galileas de Júpiter (Fig. 5), más algunas otras, pero ¿cuántas lunas tiene Júpiter? ¡Nadie está seguro! Tampoco estamos seguros de cuántas tiene Saturno. Según el último cálculo, Júpiter tenía más de 60 lunas, y llevaba una pequeña ventaja sobre Saturno. La mayoría de estas lunas son muy pequeñas y solamente pueden verse con telescopios muy grandes.

Probablemente la vista más memorable que verá con su telescopio es Saturno.
Aunque puede que no vea muchas características de la superficie de Saturno, su estructura de anillos le dejará sin aliento. Probablemente pueda ver una apertura negra en los anillos, conocida como la banda Cassini.

Saturno no es el único planeta con anillos, pero es el único grupo de anillos que puede verse con un telescopio pequeño. Los anillos de Júpiter no pueden verse en absoluto desde la Tierra – la nave Voyager descubrió el anillo cuando pasó por Júpiter y giró para mirarlo. Resulta que solamente con la luz solar pasando por ellos pueden observarse

Hechos Meade

Los anillos de hielo, polvo y gas de Saturno son gigantecos y diminutos al mismo tiempo. Los anillos principales son tan grandes que podrian llegar casi desde la Tierra a la Luna. Sin embargo solamente tienen una amplitud de media milla (800 m) (unas pocas manzanas urbanas).

los anillos. Urano y Neptuno también tienen tenues anillos.

Los filtros opcionales de color ayudan a resaltar el detalle y contraste de los planetas. Meade ofrece una gama de filtros de color asequibles.

¿Y ahora? Más allá del sistema solar: Cuando haya observado nuestro sistema planetario, es hora de alejarse de casa y observar estrellas y otros objetos. Puede observar miles de estrellas con su telescopio. Al principio puede creer que las estrellas solamente son puntos de luz y no son muy interesantes. Mire otra vez. Dispone de mucha información que revelan las estrellas.

Lo primero que notará es que no todas las estrellas tienen los mismos colores. Pruebe a localizar estrellas azules, naranjas, amarillas, blancas y rojas. El color de las estrellas puede indicarle a veces la edad de una estrella y la temperatura que tiene. Otras estrellas dignas de observar son las estrellas múltiples. A menudo puede encontrar estrellas dobles (o binarias), estrellas muy cercanas entre si. Estas

estrellas se orbitan mutuamente. ¿Qué nota en estas estrellas? ¿Son de colores distintos? ¿Una parece más brillante que la otra?

Casi todas las estrellas que puede ver en el firmamento son parte de nuestra galaxia. Una galaxia es una gran agrupación de estrellas, con millones o miles de millones de estrellas. Algunas galaxias forman una espiral (como nuestra galaxia, la Vía Láctea) y otras galaxias se parecen más a una gran bola y se llaman galaxias elípticas. Existen muchas galaxias con forma irregular, que se cree se han separado por pasar demasiado cerca -o a través- de una galaxia mayor.

Puede poder observar la galaxia Andrómeda

y otras con su telescopio.

Aparecerán como nubes pequeñas y borrosas. Solamente un telescopio muy grande podrá mostrar detalles de espiral o elíptica.

También podrá ver algunas nebulosas con su telescopio. Nebulosa significa nube. La mayoría de nebulosas son nubes de gas. Las dos más fáciles de observar en el hemisferio norte son la nebulosa de Orión en invierno y la nebulosa Trífida en verano. Son grandes nubes de gas en las que nacen nuevas estrellas. Algunas nebulosas son restos de la explosión de una estrella. Estas explosiones se llaman supernovas.

Cuando sea un observador experimentado podrá buscar otro tipo de objetos, como asteroides, nebulosas planetarias y clústeres globulares. Si tiene suerte, de vez en cuando aparece un cometa brillante en el firmamento, ofreciendo una vista inolvidable. Cuanto más aprenda sobre los objetos

Cuanto más aprenda sobre los objetos del firmamento, más aprenderá a apreciar las vistas que observe en el telescopio. Comience un bloc de notas y anote las observaciones que realiza cada noche. Anote la hora y fecha.

Use un compás para realizar un círculo, o dibuje la tapa de un tarro. Dibuje lo que ve en el ocular dentro del círculo. El mejor ejercicio para dibujar es observar las lunas de Júpiter aproximadamente cada noche. Pruebe a hacer Júpiter y las lunas de aproximadamente el mismo tamaño que tienen en su ocular. Verá que las lunas están en una posición distinta cada noche. A medida que mejore en el dibujo, pruebe con vistas más complicadas, como un sistema de cráteres de la Luna o incluso una nebulosa.

Vaya a su biblioteca o Internet para obtener más información de astronomía. Aprenda los fundamentos: años luz, órbitas, colores de estrellas, el modo de formación de estrellas y planetas, corrimiento a rojo, el big bang, cuáles son los distintos tipos de nebulosa, qué son los cometas, asteroides y meteoros y qué es un agujero negro. Cuanto más aprenda sobre astronomía, más diversión y satisfacción obtendrá de su telescopio.

ALGUNAS RECOMENDACIONES DE OBSERVACIÓN

Oculares: Comience siempre sus observaciones con el ocular de 26mm de baja potencia.

El ocular de 26mm ofrece un campo de visión amplio y brillante, y es el mejor para la mayoría de condiciones de observación. Use el ocular de 9mm de alta potencia para ver detalles cuando observe la Luna y planetas. Si la imagen está borrosa, pase a una potencia menor. Cambiar los oculares cambia la potencia de aumento de su telescopio.

También puede cambiar el aumento usando una lente Barlow. La lente Barlow incluida con su telescopio dobla la potencia del mismo. Ponga la Barlow dentro del soporte del ocular antes de introducir el ocular.

Meade ofrece una gama completa de oculares y Barlow para su telescopio. La

NAVEGUE LA WEB

- Comunidad Meade 4M: http://www.meade4m.com
- Sky & Telescope:
 - http://www.skyandtelescope.com
- Astronomy:
- http://www.astronomy.com
- Imagen de astronomía del día: http://antwrp.gsfc.nasa.goc/apod
- Atlas fotográfico de la Luna:
- http://www.lpi.ursa.edu/research/lunar_orbiter
- Imágenes públicas del telescopio espacial Hubble: http://oposite.stsci.edu/pubinfo/pictures.html

mayoría de astrónomos tienen cuatro o cinco oculares de baja y alta potencia para ver distintos objetos y encargarse de distintas condiciones de observación

Los objetos se mueven en el ocular: Si observa un objeto astronómico (la Luna, un planeta, estrella, etc.) observará que el objeto comenzará a moverse lentamente por el campo de visión del telescopio. Este movimiento es causado por la rotación de la Tierra y hace que un objeto parezca moverse por el campo de visión del telescopio. Para mantener objetos astronómicos centrados en el campo, mueva el telescopio en uno ambos ejes -vertical v/u horizontal según sea necesario- y pruebe a usar los controles de ajuste aproximado y preciso del telescopio. Con potencias superiores, los objetos astronómicos parecerán moverse más rápidamente por el campo de visión del ocular.

Ponga el objeto que quiera ver en el borde del campo y, sin tocar el telescopio, verá como se desplaza por el campo de visión al otro lado antes de volver a colocar el telescopio, de forma que el objeto que se vaya a ver vuelva a quedar en el borde del campo, listo para seguir observándolo.

Vibraciones: Evite tocar el ocular cuando observe por el telescopio. Las vibraciones del contacto harán que se mueva la imagen. Evite lugares de observación en los que las vibraciones hagan que se mueva la imagen (por ejemplo, cerca de vías de tren). Observar desde las plantas superiores de un edificio también puede provocar que la imagen se mueva.

Deje que sus ojos se adapten a la oscuridad: Deje pasar cinco o diez minutos para que sus ojos se adapten a la oscuridad antes de observar. Use una linterna con filtro rojo para proteger su visión nocturna cuando lea mapas estelares, o inspeccione el telescopio. No use una linterna normal ni encienda otras luces cuando observe con un grupo de astrónomos. Puede preparar su propia linterna con filtro rojo pegando celofán rojo sobre la lente de la linterna.

Ver a través de ventanas: Evite colocar el telescopio dentro de una habitación y

observar a través de una ventana cerrada o abierta. Las imágenes pueden verse borrosas o distorsionadas debido a las diferencias de temperatura entre el aire interior y exterior. Es recomendable dejar que el telescopio llegue a temperatura ambiente exterior antes de iniciar una sesión de observación.

Cuándo observar: Los planetas y otros objetos bajos en el horizonte a menudo están poco definidos - el mismo objeto, cuando está más alto en el firmamento, estará más definido y contrastado. Pruebe a reducir la potencia (cambiar el ocular) si

CARTAS ESTELARES

Las cartas estelares y planisferios son útiles por diversos motivos. Especialmente, son una gran ayuda para planificar una noche de observación celeste.

En libros, revistas, internet y CD-ROM dispone de una amplia variedad de cartas estelares. Meade ofrece el software AutoStar SuiteTM. Contacte con su proveedor Meade local o el departamento de servicio al cliente de Meade para más información.

Las revistas Astronomy y Sky and Telescope imprimen cartas estelares cada mes para tener mapas actualizados del firmamento.

la imagen está borrosa o tiembla. Tenga en cuenta que una imagen brillante y clara, aunque más pequeña, es más interesante que una imagen más grande, apagada y borrosa.

Usar un ocular de potencia excesiva es uno de los errores más habituales de los astrónomos noveles.

Tápese: Incluso en noches de verano, el aire puede ser fresco o frío a medida que avanza la noche. Es importante vestir ropa cálida o tener cerca un jersey, chaqueta, guantes, etc.

Conozca el lugar de observación: Si es posible, conozca la ubicación desde la que va a observar. Preste atención a agujeros del suelo y otros obstáculos. ¿Es un lugar en el que pueden aparecer animales salvajes, como mofetas, serpientes, etc.? ¿Hay obstrucciones a la vista como árboles altos, farolas, focos y similares? Las mejores ubicaciones son lugares oscuros, mejor cuanto más oscuros. Los objetos de espacio profundo se ven más fácilmente con un firmamento oscuro.

Sin embargo, es posible observar incluso en una ciudad.

Navegue la web y visite su biblioteca local: Internet contiene gran cantidad de información astronómica, tanto para niños como adultos. Mire los libros de astronomía de su biblioteca. Mire las cartas estelares – están disponibles mensualmente en las revistas Astronomy y Sky and Telescope.

PÁSELO BIEN, LA ASTRONOMÍA ES DIVERTIDA

ESPECIFICACIONES

Modelo Infinity 60:

Diámetro de lente de objetivo	60mm (2,4")
Longitud focal de tubo óptico	800mm
Relación focal	f/13,3
Tipo de soporte	Altazimut
Localizador	Punto rojo

Modelo Infinity 70:

-	
Diámetro de lente de objetivo	70mm (2,8")
Longitud focal de tubo óptico	700mm
Relación focal	f/10
Tipo de soporte	Altazimut
Localizador	Punto rojo

¿Qué significan las especificaciones? La longitud focal del tubo óptico es la distancia que recorre la luz en el telescopio antes de centrarse en el ocular. Según el modelo del telescopio, la longitud focal es de 800mm o 700mm. Mire la tabla de especificaciones para saber la longitud focal de su telescopio.

El diámetro de la lente de objetivo es el tamaño de la lente frontal de su telescopio. Los telescopios siempre se describen por el tamaño de su lente de objetivo. Según el modelo del telescopio, el diámetro de la lente es 60mm o 70mm.

Otros telescopios son de 90mm, 8 pulgadas (20 cm), 16 pulgadas (40 cm) o incluso 3 pies (90 cm) de diámetro. La lente de objetivo del telescopio Hubble tiene un diámetro de 2,4 metros (¡son 7,8 pies de lado a lado!).

RECURSOS DE ASTRONOMÍA

- Comunidad Meade 4M: 27 Hubble, Irvine, CA 92618
- Liga astronómica Secretario ejecutivo
 - 5675 Real del Norte, Las Cruces, NM 88012
- Sociedad astronómica del Pacífico 390 Ashton Ave., San Francisco, CA 94112
- Sociedad Planetaria
- 65 North Catalina Ave, Pasadena, CA 91106International Dark-Sky Association, Inc.
- 3225 N. First Avenue, Tucson, AZ 85719-2103

La relación focal ayuda a determinar la rapidez de velocidad fotográfica de un telescopio. Cuanto menor sea el número de relación focal, más rápida es la exposición. f/5 es más rápido que f/10. Cuanto más rápida sea la relación, más rápido tiempo de exposición se necesita al conectar una cámara al telescopio. Su telescopio tiene una relación focal más lenta, de f/8,5. A veces, los astrónomos usan reductores focales para que los telescopios de exposición lenta tengan relaciones focales más rápidas.

El soporte altazimut solamente significa que su telescopio se mueve arriba y abajo

(altitud o "alt") y de lado a lado (azimut o "az"). Existen otras configuraciones de soporte para otros telescopios, como el soporte ecuatorial.

USAR LAS ESPECIFICACIONES PARA CALCULAR EL AUMENTO DE SU OCULAR

La potencia de un telescopio es el modo en que aumenta objetos. Para el Infinity 70, el ocular de 26mm aumenta un objeto 27 veces. El ocular de 9mm aumenta los objetos 78 veces.

Si obtiene otros oculares puede calcular la cantidad de aumento que tienen con su telescopio. Divida la longitud focal del telescopio por la longitud focal del ocular.

Longitud focal del telescopio

Longitud focal del ocular

=

Aumento

Observe las especificaciones. Para el Infinity 70, verá que la longitud focal del telescopio es de 700mm. Digamos que ha adquirido un ocular de 13mm. Puede saber la longitud focal de su ocular dado que está impresa en el lateral de un ocular. Divida: 700 ÷ 13. que

equivale a 54,85. Redondéelo al entero más cercano y su nuevo ocular aumentará los objetos 55 veces.

Un gran accesorio para su telescopio es una lente Barlow Si usa una lente Barlow con uno de sus oculares, dobla el aumento de su ocular. Otros tipos de Barlow pueden triplicar o aumentar más la potencia de un ocular. Para saber el aumento cuando use una Barlow, multiplique el aumento de su ocular por dos.

Aumento del ocular x 2

-

Aumento con lente Barlow 2X

Para el Infinity 70, el ocular de 26mm de baja potencia aumenta un objeto 27 veces. Multiplique 27 por 2 y obtendrá un aumento de 54 veces con una Barlow.

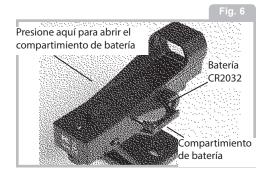
Vale la pena repetirlo: Tenga en cuenta que una imagen brillante y clara, aunque más pequeña, es más interesante que una imagen más grande, apagada y borrosa. Usar un ocular de potencia excesiva es uno de los errores más habituales de los astrónomos noveles. No crea que un aumento mayor es necesariamente mejor —

a menudo la mejor vista es con un aumento menor.

CUDADOS DE SU TELESCOPIO

Su telescopio es un instrumento óptico de precisión diseñado para toda una vista de observación satisfactoria. Raramente, si es el caso, precisará de servicio o mantenimiento de fábrica. Siga estas orientaciones para mantener su telescopio en el mejor estado posible:

- Evite limpiar las lentes del telescopio. Un poco de polvo en la superficie de la lente correctora del telescopio no provocará pérdidas de calidad de imagen.
- Cuando sea totalmente necesario, el polvo de la lente anterior debería sacarse con suaves pasadas de un pincel de pelo de camello o soplarse con una perilla auditiva (disponible en la mayoría de farmacias).
- Las huellas dactilares y los materiales orgánicos de la lente anterior pueden sacarse con una solución de 3 partes de agua destilada y 1 de alcohol isopropílico. También puede añadir 1 gota de detergente lavavajillas biodegradable por cada medio litro de solución. Use


papel tisú facial blanco suave y realice suaves pasadas rápidas. Cambie el tisú a menudo.

PRECAUCIÓN: No use tisú perfumado ni con loción o podría dañar la óptica. NO use un limpiador de lentes fotográficas comercial.

CAMBIAR LA BATERÍA DEL LOCALIZADOR

Si el punto rojo del localizador no se enciende, compruebe que el localizador esté encendido girando el mando bajo la lente del localizador a la derecha. Si el punto rojo no se enciende, la batería puede tener que cambiarse.

Para cambiar la batería, presione el lado izquierdo del chasis del localizador marcado con "push". El compartimiento de batería se soltará del lado derecho del localizador (ver Fig. 6). Cambie la batería por una batería de litio CR2032 con el lado positivo arriba. Vuelva a colocar el compartimiento de batería en el localizador y enciéndalo.

ÚNASE A UN CLUB ASTRONÓMICO, VAYA A UNA FIESTA ESTELAR

Una de las mejores formas de aumentar su conocimiento astronómico es unirse a un club astronómico. Compruebe su periódico local, escuela, biblioteca o distribuidor/tienda de telescopios para saber si existe un club en su zona.

Muchos grupos también realizan fiestas estelares con regularidad, en las que puede comprobar y observar con muchos telescopios distintos y otros tipos de equipos astronómicos. Las revistas como Sky and Telescope y Astronomy imprimen programas de muchas fiestas estelares populares en Estados Unidos y Canadá.

ACCESORIOS OPCIONALES

Oculares adicionales (diámetro de cañón de 1,25"): Para aumentos superiores o inferiores con telescopios que acepten oculares de 1,25", los oculares Meade de la gama 4000 Super Plössl, disponibles en diversos tamaños, proporcionan un elevado nivel de resolución de imagen y corrección de color a un precio asequible. Visítenos en la web en www.astroshop.es.

Hechos Meade

Justo debajo del famoso cinturón de tres estrellas de la constelación de Orión (en el ecentro de la espada) está la Gran Nebulosa de Orión. Este fantástico objetivo para telescopios es de hecho una fábrica estelar cósmica en la que gas brillante envuelve jóvenes estrellas muy calientes.

REGISTRO DE OBSERVACIÓN		
OBSERVADOR:		<i>All</i>
NOMBRE DE OBJETO:		<u>*</u>
FECHA Y HORA DE OBSER	VACIÓ <u>N:</u>	
CONSTELACIÓN:		
TAMAÑO DE OCULAR:		
CONDICIONES DE OBSERV	ACIÓN ☐ EXCELENTES	☐ BUENAS ☐ MALAS
NOTAS:		

fotocopie esta página

DIBUJO DE LA IMAGEN

Meade Instruments Corp. 27 Hubble, Irvine, California